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Abstract The problem for dynamic IP address
assignment is manifest in mobile ad hoc networks,
especially in 4G all-IP-based heterogeneous net-
works. Existing solutions are mainly riveted to
decentralized algorithms, applying a large num-
ber of broadcast messages to (1) maintain avail-
able IP address pools and (2) ensure no address
duplication occurring. In this paper, we propose
a ring-based address autoconfiguration protocol
to configure node addresses. This work aims at
the decentralized ring-based address autoconfigu-
ration (DRAA) protocol, which has the advantage
of low latency, low communication overhead and
high uninterruptible connection. The DRAA pro-
tocol is a low-latency solution because each node
independently allocates partial IP addresses and
does not need to perform the duplicate addresses
detection (DAD) during the node-join operation.
Communication overhead is significantly lessened
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in that DRAA protocol uses the logical ring, thus
utilizing fewer control messages solely by means of
uni-cast messages to distribute address resources
and to retrieve invalid addresses. Furthermore, if
duplicate addresses are shown at network merg-
ing, the DRAA protocol checks the number of
both TCP connections and of nodes to allow dupli-
cate nodes to rejoin the smaller network so that
lost connections are fast re-connected. To improve
communication overhead and provide the even-
ness of address resources, the centralized ring-based
address autoconfiguration (CRAA) protocol is
discussed. The CRAA protocol reduces larger num-
bers of broadcast messages during network merging.
The other contribution is that our CRAA proto-
col also has an even capability so that address re-
sources can be evenly distributed in each node in
networks; this accounts for the reason our solution
is suitable for large-scale networks. Finally, the per-
formance analysis illustrates performance achieve-
ments of RAA protocols. The simulation result
shows that the DRAA protocol has the shortest la-
tency, that the CRAA protocol has the capability to
evenly distribute address resources, and that both
of DRAA and CRAA protocols are the good solu-
tions which achieve low communication overhead
and high uninterruptible connection.

Keywords Autoconfiguration · IP address
assignment · MANET · RAA · Wireless IP
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1 Introduction

Multiple functions of the fourth-generation (4G)
communication system are envisioned to be
extensively used in the near future. 4G networks
are an all-IP-based heterogeneous network,
exploiting IP-based technologies to achieve inte-
gration among multiple access network systems,
such as 4G core networks, 3G core networks, wire-
less local area networks (WLANs) and Manifest in
mobile ad hoc networks (MANETs). In IP-based
MANETs, users communicate with others with-
out infrastructures and service charges. A MA-
NET is made up of identical mobile nodes, each
node with a limited wireless transmission range
to communicate with neighboring nodes. In order
to link nodes through more than one hop, multi-
hop routing protocols—such as DSDV [9], AODV
[10], DSR [5], FSR [3], ZRP [20] and OLSR [4]—
are designed. These multi-hop routing protocols
require each node to have its own unique IP ad-
dress to transmit packets hop-by-hop toward the
destination. Hence to practice these routing proto-
cols in a correct manner, a node must possess an IP
address bearing no similarity to that of any other
node. Provided that two nodes possess the same
IP address, then packets are likely to be transmit-
ted toward a wrong direction. Therefore, the effi-
ciency and accuracy of routing protocols depends
on whether a node in MANETs is assigned with a
unique IP address.

In hardwired networks, hosts generally employ
the Dynamic Host Configuration Protocol (DHCP
[2]) and IPv6 stateless address autoconfiguration
[15] for dynamic IP address assignment. MANETs,
by contrast, does not rely on a fixed server like
DHCP because nodes in networks have joining,
leaving, partitioning and merging behaviors. In the
process of network merging, the duplicate address
detection (DAD) plays an important role as the
detector in IP address assignment. Because two
or more nodes using the same IP address in a
MANET inevitably cause packets to be routed
toward the wrong destination, much research fo-
cuses on decentralized algorithms, enabling dy-
namic IP address assignment to function properly
in MANETs. However, the DAD procedure in all
existing solutions costs excessive communication
overhead which consumes much bandwidth.

In recent years, many solutions for dynamic
IP address assignment in MANETs have been
brought out. According to their dynamic address-
ing mechanisms, we organize these solutions into
the following four categories: all agreement
approaches [8,11,18], leader-based approaches [13,
17], best-effort approaches [16,19] and buddy sys-
tem approaches [6,14]. In Table 1, four typical pro-
tocols from four different types of approaches are
selected to compare with RAA protocols on char-
acteristics and performances. The first row is the
category of protocols. Their characteristic compar-
isons are shown from the third to seventh rows.
The quantitative evaluation of selected protocols
is presented in the last three rows. The notations
are used to explain comparisons first: the node
number in a MANET is n, the MANET diame-
ter D, the average node degree d, the average hop
number h, the retry times r, the average transmis-
sion latency of the quickest-reply node t, and the
average transmission latency of 1-hop neighboring
nodes is T.

The all agreement approach [8] featured a dis-
tributed, dynamic host configuration protocol for
address assignment called MANETconf, where
each node maintains both Allocated and Allocated_
Pending data structures. An Allocated address pool
records all IP addresses in use. The moment a node
joins or leaves a network, the Allocated address
pool in every node would be refreshed, adding new
addresses to or removing leaving nodes’ addresses
from the list. However, the more nodes in a net-
work are, the larger an Allocated address pool
becomes. It inefficiently takes enormous storage
space and huge efforts to maintain every address
pool in each node. The latency of assigning a usable
address to a joining node is at most O(r × D × t),
which performs the worst among all solutions. In
MANETconf, a joining node waits for all nodes
to respond via affirmative replies for a selected
address. If at least one response is negative, another
address is retried. Communication overhead is at
most O(r × n2) because every node uses broadcast
messages to maintain both Allocated and
Allocated_Pending data structures for node join-
ing, leaving and networks merging. The greatest
communication overhead will be produced during
network merging because nodes in networks must
perform DAD.
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Table 1 The comparison of characteristics and performances

Categories All agreement Leader-based Best-effort Buddy system Our solutions

Solutions MANETconf [8] DACP [13] Prophet [19] AAAC [14] DRAA CRAA
Address alloca-
tion

Decentralized Decentralized Decentralized Decentralized Decentralized

Network merg-
ing

Decentralized Centralized Decentralized Decentralized Decentralized Centralized

DAD during
configuration

Yes Yes No No No

Changing ad-
dresses during
merges

Duplicate nodes Duplicate nodes All nodes Duplicate nodes Duplicate nodes

Evenness Yes Yes Yes Probably no Probably no Yes
Latency of ad-
dress allocation

O(r × D × t) O(r × h × n) O(t) O(t) O(t) O(T)

Communication
overhead

O(r × n2) O(r × h × n) O(d × n) O(r × n2) O(r × n2) O(r × h × n)

Scalability Small Medium Medium/High Medium High

Among leader-based approaches, Sun and Bel-
ding-Royer [13] proposed a Dynamic Address
Configuration Protocol (DACP). Each node inde-
pendently obtains a candidate address and reg-
isters the chosen address to the leader node for
DAD. Communication overhead is O(r × h × n),
the number of which is smaller because only the
leader node broadcasts the network-merging infor-
mation. The leader node periodically broadcasts
Network Identifier Advertisement messages to
detect network partitioning and merging. The big-
gest drawback Leader-based approaches bear is
that the workload of the leader node is too heavy
due to DAD for all joining nodes.

The prophet address allocation protocol [19]
makes use of an integer sequence consisting of
random numbers through the stateful function f (n)

for conflict-free allocation. The function f (n) keeps
low probability of address duplication. Prophet
does not perform DAD to reduce communication
overhead during network merging, but nodes with
the smaller network identifier (NID) change their
IP addresses no matter duplication occurs or not.
It is because during network merging, the various
addresses of nodes in different networks will cause
the function f (n) not to guarantee conflict-free
allocation. Although Prophet brings the benefit of
lower communication overhead [O(d × n)], nodes
break all on-going connections with the smaller
NID. When two large networks merge, the impact
of connection loss is significant.

Tayal and Patnaik [14] proposed an address ass-
ignment for the automatic configuration (named
AAAC), to which the buddy system is applied
whenever resources run out and new nodes seek
to join a network. A node requested to allocate an
address broadcasts SEARCH_ADDR messages,
waiting for all other nodes to respond with their
own sets of IP addresses. This node subsequently
compiles statistics from responding sets to acquire
unused addresses, one of which will be allotted to a
newly-joined node, and send back NODE_CRASH
messages to these nodes, allowing each node to
take over neighboring addresses. In order to get
an address at O(t), AAAC results in the unbal-
ance of address pools. Free address blocks deplete
quickly because a node splits its 2m-unit block into
two with 2m−1 units. For example, if a node holds
210 free address block, the block will be consumed
after ten times of split-up. After the consumption,
the node starts free address searching which leads
to longer addressing latency. In AAAC, every node
in merging networks broadcasts its IP address and
address pool to whole networks for network merg-
ing, whose communication overhead is O(r × n2).

The best case of addressing latency is O(t) in
Prophet, AAAC and our decentralized ring-based
address autoconfiguration (DRAA) protocols. All
of them allocate a usable address from the free
address block immediately when receiving an
address request. Our DRAA protocol is a low-
latency solution because each node independently
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allocates partial IP addresses and does not need to
perform the DAD during the node-join operation.
The latency is O(T) in our centralized ring-based
address autoconfiguration (CRAA) protocol
because a joining node waits for all 1-hop neigh-
bors’ responses and chooses the largest free address
block to use. Contrasted with Prophet and AAAC,
the CRAA protocol increases a little latency but
postpones the time for resource consumption and
leads to the evenness of address allocation. The pri-
mary difference among the all agreement approach,
the buddy system approach and RAA protocols
is that the former two approaches are unlikely to
recognize which nodes should take over unused
address sets so that blind broadcast messages are
transmitted to inform all nodes in the network,
whereas RAA protocols resolve the blind broad-
cast problem by the logical ring among nodes. As a
result, our solutions reduce the number of broad-
cast messages and avoids defects shown in the
other two approaches. The main difference be-
tween the leader-based approach and the CRAA
protocol is that the leader in the former approach
presides at DAD, whereas the holder in CRAA is
not in charge of DAD.

The remaining sections of the paper are orga-
nized as follows. Section 2 proposes preliminary of
this paper, which includes model, basic idea and
improvement contribution of RAA protocols. In
Sect. 3, we present the details of the DRAA with
regard to address resource maintenance and node
behavior handling. In Sect. 4, the CRAA is intro-
duced. Section 5 shows the performance analysis.
Finally, Sect. 6 draws conclusions for the paper.

2 Preliminary

In this section, we proffer both conceptual dis-
crepancies among various protocols and the basic
idea of RAA protocols. We present the basic idea
of RAA protocols in Fig. 1, and show how to allo-
cate IP address in RAA with the ring structure and
the binary buddy system in Fig. 2. The key to deter-
mining the effectiveness of a dynamic IP address
assignment protocol mainly lies in both the latency
of node joining and communication overhead of
network merging, and we illustrate the comparison
among various protocols in terms of node joining
and network merging in Figs. 3 and 4, respectively.

We present the difference of address allocation
between DRAA and CRAA protocols during node
joining in Fig. 5, and show the improvement of
resource management in Fig. 6. Finally, in Fig. 7,
we illustrate how DRAA and CRAA protocols do
with existing connections when duplicate address-
ing occurs during network merging.

2.1 Model

We consider mobile wireless networks where all
nodes use IP address to communicate with oth-
ers. Such a network can be modeled as follows. A
mobile wireless network is represented as a graph
G = (V, E), where V is the set of nodes and E is
the edge set which gives available communications.
The communication (u, v) belonging to E means
that u sends messages to vconnection set of vertex
u is defined as E(u). In a given graph G = (V, E),
we denote by n = |V| the number of nodes in
the network. The neighbor set N(u) of vertex u is
defined as N(u) = {v|(u, v) ∈ E}. The identifier
(ID) and the related list of node u are represented
as Nu and RLu, respectively. The network identi-
fier is represented as NID, which is 2-tuple: <IP
address, Random number>, by whose uniqueness
is distinguished in different networks. The ID of a
node is 2-tuple: <NID, IP address>. The succes-
sor, the predecessor and the second predecessor of
node u are represented as Su, Pu, and SPu.

2.2 Basic Idea

In this paper, we draw on a novel technique devel-
oped in peer-to-peer (P2P) networks to provide a
logical view for resource maintenance. The buddy
system is adopted due to such benefits as quicker
responses as well as fewer broadcast messages
for both address assignment and resource main-
tenance, enabling each node to hold its disjoint set
of IP addresses. Recently, P2P technology is fast
gaining ground around the world. It offers a logical
network, allowing clients to share files in a P2P way.
One of the distributed hash table (DHT) based ap-
proaches in P2P, known as Chord [12], inspires us to
utilize its logical view to perform address resource
management. In the prototype of Chord, in order
to keep load balancing, each node uses the hash
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Fig. 1 (a) The concept of
successor, the predecessor
and the second
predecessor. (b) Each
node in RAA protocols
maintains its related list
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function to produce a node identifier by hashing
its own IP address, and each file (i.e., resource) uti-
lizes the same function to produce a key identifier
(i.e. both the original key and its image) by hashing
its own file name. Unlike Chord, our solutions—
RAA protocols—are not necessary to use any hash
function to distribute address resources because IP
address resources differ from file ones. One file can
hold in many nodes whereas an IP address only
exists in one node. If the hash function is applied
to distribute address resources for the evenness in
networks, the complexity of address management
will be raised and not be suitable in MANETs. For
this reason, the buddy system is combined in RAA
protocols to manage resources.

In RAA protocols, each node records its logi-
cal neighbors’ IDs on the related list (RL). Log-
ical neighbors are the successor, the predecessor
and the second predecessor. Notice that the RL
is only updated during node joining. As presented
in Fig. 1a, if Ni exists in RAA protocols, the suc-
cessor (Si) is the node which allocates an address
block to it and is also the first node in the clockwise

course starting from Ni. The predecessor (Pi) and
the second predecessor (SPi) are the first node and
the second node in the anticlockwise course start-
ing from Ni, respectively. The successor’s, the pre-
decessor’s and the second predecessor’s IDs can
be represented as SIDi, PIDi and SPIDi. The RL
of Ni is RLi: {SIDi, PIDi, SPIDi}. As shown in
Fig. 1b, each node possesses its own anticlockwise-
course free address block. During node leaving,
only the successor in the clockwise course has to
be informed; then it will retrieve the address block
of the leaving node.

Figure 2 shows two illustrations of how to assign
IP addresses with RAA protocols. To simplify
statements, we use fewer address blocks, decimal-
ize IP addresses and assume there are 64 IP
addresses (0–63). In Fig. 2(a), at first node Ni ran-
domly selects an IP address which is presumed as 0
and possesses the whole address block (including
64 IP addresses). Figure 2b is a ring formed through
the logical relationship among nodes. When Ni

receives an address request (AREQ) from Nj, Ni

uses the binary buddy system to split its address
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block into two with 32 IP addresses, respectively.
From the perspective of the assigning node, Ni

assigns the second free address block from the
anticlockwise direction to Nj and keeps the other
itself. Nj thereupon uses the last IP address of
the assigned block. On analogy, after Nj receives
an AREQ from Nk, Nj repeats the identical

procedure—dividing an address block into two and
allotting one to Nk. Procedure finished, Ni, Nj, and
Nk all own an IP address and a disjoined address
block. All blocks make up a logical ring whose
block order indicates the usage situation of address
resources and guarantees that every address allo-
cated by nodes does not overlap.
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2.3 Improvement contribution

Up to the present, dynamic IP address assignment
in MANETs has lacked a perfect solution. In or-
der to obtain IP addresses and maintain usable IP
address resources, broadcast methods are largely
applied for sending control messages to MANETs.
Nevertheless, too many control messages causing
heavy traffic load in MANETs solely result in both
the reduction of bandwidth utility and the insca-
lability of current schemes. To offer effective IP
address assignment in a dynamic network envi-
ronment, the solution provided by our addressing
protocol presents three goals, aiming at efficient,
rapid IP address distribution as well as applica-
ble address resource maintenance: (1) low latency,
(2) low communication overhead, (3) evenness,

and (4) uninterruptible connection. Namely, low
latency produces the results that a requested node
timely gets a unique address in the IP address
assignment process, communication overhead is
lessened to enhance network efficiency, and
address resources are evenly distributed in each
node. If duplicate addressing occurs during net-
work merging, the on-going TCP connections in
duplicate nodes will be broken, which results in
poor uninterruptible connection.

2.3.1 Latency

In Fig. 3a, b, MANETconf and DACP are not con-
flicting free protocols, so they have to perform
DAD during node joining, which increases the
latency of node joining. On the contrary, the other
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protocols, such as Prophet, AAAC, DRAA, and
CRAA, are conflicting ones so that they can assign
a unique address to new nodes without DAD (Fig.
3c–e). Furthermore, AAAC, DRAA, and CRAA
are categorized into buddy system approaches,
whose main difference is the evenness of address
blocks in all nodes during node joining. The more
uneven the size of every address block, the more
probable the fact that a new node is not assigned
with an address and greater latency occurs dur-
ing node joining as well. In AAAC and DRAA,
a new node Nj broadcasts a one-hop AREQ to its
neighbors and awaits the very first address
reply (AREP). As shown in Fig. 3e, although select-
ing the fastest AREP lessens the latency, address
blocks are distributed unevenly in the meantime.
However, the CRAA protocol awaits AREPs of all
neighbors and picks up the largest address block
for use, which effectively improves the uneven dis-
tribution of address blocks shown in the former
case.

2.3.2 Communication overhead

In a dynamic IP address assignment protocol, the
largest communication overhead occurs in network
merging, during which all nodes perform DAD
to confirm that no address is conflicting among
networks. When duplicate addresses exist, dupli-
cate nodes need to discard connections and re-
join the network. Figure 4 illustrates the compari-
son among various protocols in terms of network
merging. Figure 4a shows original networks. There
are seven nodes and seven connections in the left-
sided network (G) whereas four nodes and four
connections are indicated in the right-sided net-
work (G′). As shown in Fig. 4b, c, each node in
MANETconf and AAAC has to broadcast its own
address to the network for DAD, whereas only
the leader node broadcasts addresses in DACP.
In MANETconf, AAAC and DACP, among dupli-
cate nodes (node 6 and 7), the node with fewer
connections is selected to rejoin the network. But
duplicate nodes have the same connections (two
connections) in two networks, one of them should
be made to acquire a different IP address. As shown
in Fig. 4d, Prophet does not perform DAD during
network merging, in that the function f (n) can not
offer new nodes unique addresses if nodes are not

programmed to rejoin a network when Prophet
executes network merging. Communication over-
head is reduced if DAD is not executed; however,
all on-going connections are broken in the smaller
NID (i.e., assume the G′ network has the smaller
NID), where all nodes need to rejoin the network.
As shown in Fig. 4e, f, only duplicate nodes in the
smaller network G′ need to rejoin the network in
both DRAA and CRAA protocols. The advantage
of such is that in the smaller network, the speed to
resume connections is higher due to fewer nodes.
The DRAA protocol provides a fully distributed
solution—each node is required to broadcast its
address to the network for DAD. In contrast, in
the CRAA protocol, the holder records addresses
of all nodes to form a node list; therefore, it merely
takes the holder to broadcast the node list to the
network for DAD.

2.3.3 Evenness

Discrepancies among various solutions during
node joining have shown in Fig. 3. In this part we
present how dissimilarly the logical ring in both
DRAA and CRAA protocols assigns address
blocks during node joining. Figure 5 shows the
difference of address allocation between these two
protocols. The DRAA protocol uses a free address
block immediately upon receiving an AREP,
whereas the CRAA protocol waits for all one-hop
neighbors’ AREPs and chooses the largest free ad-
dress block for use. As indicated in Fig. 5b, by us-
ing DRAA, a new node gets an available address
block in no time when joining a network; however,
a probable consequence might be the uneven dis-
tribution of address blocks. As denoted in Fig. 5c,
through employing CRAA, the latency increases
because the largest address block is picked; never-
theless, this protocol enables all address resources
to disperse more evenly in each node, hence post-
poning the depletion time of address resources.

The binary buddy system is one common buddy
systems with a resource size of 2m units and starting
off this size. When the application issues a request,
a 2m-unit block is split into two with 2m−1 units,
respectively. However, resources in the binary
buddy system are depleted rapidly. As displayed
in Fig. 6a, when a node owns 27 addresses and
allocates them to other nodes up to seven times,
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address resources will be consumed. As
shown in Fig. 6b, as a new node asks a resource-
consumed node for an address, the latter broad-
casts messages to all nodes in order to retrieve
unused blocks (orphan blocks) and searches for a
free address block for the new node. In the tra-
ditional buddy system approach (AAAC), orphan
blocks are retrieved solely during resource con-
sumption. If a network changes with high frequency,
then resources usually run out. If so, the latency
of a new node’s requiring an available address
block inevitably increases. The failed nodes are
checked for their failure and orphan blocks are
recovered during the node joining stage in our ap-
proach. Without the extra actions of failure-nodes
collection, the resource can be easily reused on the
node joining stage. The resource consumption is
decreased, the latency of address requirement is
decreased, and orphan blocks are retrieved. For
example, if the allocated node 47 has been failed
and marked white as illustrated in Fig. 6c, then a
new node 55 of the inside ring joins the network
and obtains RL0 from N0. Via PID0 (47) and SPID0
(31) on the RL0, orphan blocks are retrieved and
become parts of the logical ring, shown as the
outside ring. During node leaving, it postpones
the resource consumption time and avoids over-
abundant broadcasting messages to use the RL to
retrieve orphan blocks. Our solution achieves
highly efficient resource management and address
allocation through the combination of logical ring
and the buddy system.

2.3.4 Uninterruptible connection

Comparisons among different solutions during
network merging have shown in Fig. 4. Here is
explicitly stated how DRAA and CRAA proto-
cols do with existing connections upon encounter-
ing duplicate addresses during network merging.
As illustrated in Fig. 7a, during network merging,
all nodes in both networks are required to broad-
cast their IDs as well as connection numbers in
the DRAA protocol. Each node is informed of
full information of both networks: that is, the ID
and the connection number of each node, and the
respective node number in these two networks. As
shown in Fig. 7b, in the CRAA protocol, since the
holder owns all node IDs and node numbers, solely

the holder needs to broadcast network informa-
tion. Whether DRAA or CRAA is applied, all
nodes obtain full information in network merg-
ing. As indicated in Fig. 7c, when nodes get needed
information, N39 in network G and network G′
finds out there is a duplicate address in the network
that is going to merge. N39 in network G′ identifies
the connection number is equal to that in network
G (there is one connection in N39) and also the
node number is fewer in network G′; therefore, it
rejoins the network to change its IP address. Pre-
sume that N39 asks N0’s permission to reenter, the
address of N39 will be altered as 52 and reconnect
with N21. Because we select the duplicate node in
the smaller network to rejoin, it is more likely to
fast re-connect.

3 Decentralized Ring-Based Address
Autoconfiguration Protocol (DRAA)

Since nodes in MANETs have joining, leaving, par-
titioning and merging behaviors, this section sheds
light on how the DRAA protocol handles these
behaviors. Before we introduce it, the state dia-
gram of RAA protocols should be shown first to
help handle the node behaviors. The state diagram
of RAA protocols distinguishes these behaviors
and is detailed in Fig. 8. There are totally five states
in RAA protocols: INITIAL, STABLE, MERGE,
HS, and FINISH. When a new node intends to join
a network, it enters the INITIAL state and waits
for a free address block. A node enters the STA-
BLE state when getting an address. If nodes are
informed of network merging by some node, they
enter the MERGE state for merging. If the holder
leaves the network, other nodes enter the holder
selection (HS) state to select a new holder. If leav-
ing the network, a node enters the FINISH state.
According to node behaviors, we realize how the
DRAA protocol deal with joining and leaving. In
following paragraphs, we will state the initiation
of networks and specify node behaviors via the
DRAA protocol.

3.1 Initial state

A node is in the INITIAL state before getting a
usable address. At the start, the first node, Ni,
enters a network and broadcasts a one-hop AREQ
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message. Ni awaits an address request timer
(AREQ_Timer) to gather responses from other
nodes. Once the timer expires and Ni does not
get any response, Ni gets its identity as the first
node (i.e., the holder) in the network. Ni randomly
chooses an IP address, and sets it into its ID. The

holder uses its ID and a random number as the
NID. The NID is periodically broadcast to the
whole network by the holder, enabling nodes to
get the NID of their locating network and to de-
tect network partitioning and merging. When the
NID holder fails, there is at least a node in the
designated network group not reviving the NID
after one broadcasting period. In this scenario, the
network partition processing will be started.

3.2 Node joining

When aiming to enter a network, Nj needs to
secure an IP address and then checks whether Pj
exists in the network in order to ensure the whole-
ness of address blocks. The joining procedure con-
sists of two phases: (1) address requesting and (2)
failed node checking. The address requesting phase
is used to allocate an IP address to a new node
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whereas the failed node checking is used to check
whether the predecessor of the new node is alive.

3.2.1 Address requesting phase

With Nj in the initial state and intending to join the
network in DRAA, the address requesting phase
will be triggered. The address requesting phase is
applied to allocate an IP address and an address
block to a new node, including an AREQ issued
from the new node, an AREP replied from neigh-
bors of the new node and an address reply acknowl-
edgment (AREP_ACK) sent by the new node to
the neighboring node which is the first to trans-
mit an AREP. The steps of the address requesting
phase are given below.

A1: Let Nj be in the initial state and intend to join
the network in DRAA. It sends an AREQ
message to the neighbor set N(j) and awaits
an AREP.

A2: Upon getting the quickest AREP message, Nj
immediately takes over the free address block
distributed from the responding node Ni, uses
the last address from the address block as
its own IP address, and modifies RLi to be
its own RLj. The original RLi: {SID of Ni ,
PID of Ni, SPID of Ni} can be modified as
RLj: {SIDj = ID of Ni, PIDj = PID of Ni,
SPIDj = SPID of Ni}.

A3: After Nj takes over the address block, Nj
transmits an AREP_ACK to the responding
node. An AREP_ACK message is used for
ensuring that Nj receives an AREP message
and participates in the network.

A4: If Nj does not get any AREP message after an
AREQ_Timer expires, Nj retries the address
requesting phase r times. r is the maximum of
retry times.

A5: If Nj retries the address requesting phase r
times and still not receiving any AREP mes-
sage, Nj randomly selects an address to use
and possesses all address blocks.

As shown in Fig. 9a, upon entering a network,
a node broadcasts a one-hop AREQ message and
waits for AREP messages from its neighbors. An
AREP message consists of what a responding node
distributes: (a) NID of the responded node, (b)
RL of the responded node and (c) the free address

block. According to the AREP from Ni, Nj knows
not merely its own logical position in RAA proto-
col but also the fact that both Sj and Pj are Ni and
SPj is Nj itself. For example, in Fig. 9b, N21 modifies
RL31 : {0, 15, 0} to be its own RL21: {31, 15, 0}.

3.2.2 Failed node checking phase

After the address requesting phase, Nj uses the IP
address to communicate with other nodes in the
MANET and enters the STABLE state from the
INITIAL state. The Failed node checking phase is
used to check whether the predecessor of the new
node is alive. The new node first sends an alive
unicast checking (ACHK) message to its prede-
cessor. If the predecessor is alive, the predecessor
replies with an ALIVE message to the new node.
If the predecessor fails, the new node sends an
unicast address retrieve (ARET) message to its
second predecessor to retrieve the address block
of the predecessor. Then the second predecessor
sends back an address retrieve acknowledgment
(ARET_ACK) to the new node to inform it which
ones are its new predecessor and second prede-
cessor. The design goal of our DRAA is only to
tolerate a single-node failure since each node only
keeps the information of successor, predecessor
and the 2nd predecessor. The address is requested
by the unicast communication to the predecessor
and the 2nd predecessor. Therefore, our strategy
obtains the lower communication time but causes
the single-fault tolerant result. We may easily modify
the DRAA protocol to increase the fault toler-
ance ability by keeping more backup links. How-
ever, this result is not our main concern, since the
keeping the information of the more backup links
information incurs the more extra overhead. The
operations of the failed Node Checking Phase are
given below.

B1: Nj sends an ACHK message to Pj (PIDj is in
its RLj).

B2: If Pj is alive, it sends an ALIVE message to
Nj. The failed node checking phase is
finished.

B3: If Pj is invalid, Nj retrieves the address block
of Pj. Then Nj sends an ARET message to
SPj.
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Fig. 10 The message flows of failed node checking phase
in the predecessor’s failure in the DRAA protocol

B4: An ARET_ACK message is replied when SPj
is alive. An ARET_ACK message includes
the RL of SPj, so that Nj can modify its PIDj
and SPIDj in its RLj. The failed node check-
ing phase is finished.

As seen in Fig. 10, N21 (ID = 21) sends an alive
checking (ACHK) message to P21 (PID21 = 15).
P21 fails and its orphan block is retrieved by N21,
which will send an ARET message to SP21 to
notify SP21 of P21’ failure. Then SP21 transmits
an ARET_ACK to N21, which will retrieve the
orphan block and modify its RL21 : {31, 15, 0} to
RL21 : {31, 0, 31}. Each node in the DRAA proto-
col has the capability to retrieve its first one anti-
clockwise orphan block.

3.3 Node leaving

When a node leaves the network genteelly, the
leaving node sends a LEAVE message to its succes-
sor, and then the successor takes over the address
block of the leaving node. Notice that during node
leaving, the successor is unnecessary to be the one-
hop neighbor of the leaving node, which has to
procure the successor’s routing path in the routing
table. If nodes crash without a LEAVE message,
the orphan block of the crashed node is retrieved
in the failed node checking phase.

C1: The leaving node Nl sends a LEAVE message
to Sl (SIDl is in its RLl). The LEAVE message
includes its ID and RLl.

C2: When getting the LEAVE message, Sl takes
over the leaving node’s address block and mod-
ifies its own RL.

As shown in Fig. 11, the leaving node N47 sends a
LEAVE message to its successor S47 (N0), and then
N0 takes over the address block of N47. If nodes
crash, due to the ordering of nodes in the DRAA
protocol, one node’s failure can be restored. As
mentioned earlier, when processing the failed node
checking phase, the new node retrieves the orphan
block of its predecessor.

3.4 Network partitioning

The only responsibility of the holder node in the
DRAA protocol is to broadcast its NID. If there is a
node not receiving the NID after one broadcasting
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Fig. 11 A leaving node
notifies its successor to
take over its address block
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period, the node may have been partitioned from
the network or the NID holder may have been
failed. But wireless communication is not reliable;
the NID may not be received due to packet loss. To
reduce the impact, we define network partitioning
as three broadcasting periods without receiving the
NID. Once a node detects network partitioning, it
performs the holder selection algorithm.

In the holder selection algorithm, we borrow
the random backoff in carrier sense multiple access
with collision avoidance (CSMA/CA) protocol of
IEEE 802.11 standard and slightly modify the idea.
When network partitioning is detected by the node,
the detecting node enters the HS state and chooses
a random backoff timer (RB_Timer) which deter-
mines the amount of time the node must wait until
it is allowed to broadcast its NID. The RB_Timer
reduces the collision of NID messages, broadcast
by nodes in the holder selection state.

D1: When Nj detects network partitioning, it en-
ters the HS state and chooses a RB_Timer
which determines the amount of time the node
must wait until it is allowed to broadcast its
NID.

D2: If Nj does not receive any NID, it broadcasts
its own NID and waits for other nodes to
respond their IDs after an random backoff
timer expires.

D3: If Nj receives another NID in its random
backoff period, it will broadcast its ID and

0

31

15

47

7

21

39

55

G'G

Partitioned networks

holder

N21

0

31

15

47

7

21

39

55

holder

G

Original network

N0

N39

N55

NID21

NID39

NID55

NID7

N7N0

(a) (b)

Fig. 12 The holder selection in RAA protocols

not send its own NID out. If more than one
NID is received, Nj chooses the bigger ran-
dom number which broadcasts the NID to be
its holder.

D4: When a holder is selected, all nodes enter the
STABLE state.

Figure 12 shows the original network G is par-
titioned to two networks G and G′. G still has its
holder N0, so that nodes in G do not need to select
a new holder. Nodes in the partitioned network G′
can not receive the NID from N0. Nodes in G′ enter
the HS state and intend to select a new holder. We
assume that the NID7 of N7 has the bigger random
number than other NIDs. N7 is selected to be the
new holder in G′ and the NID of G′ is NID7 which
is broadcasted from N7.
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3.5 Network merging

Assume that there are two networks G (NIDG)
and G′ (NIDG′) intend to merge. Network G has n
nodes and network G′ has n′ nodes. In the DRAA
protocol, all nodes during network merging have
to broadcast its ID for DAD. When all nodes get
full information of networks, they choose a holder
who broadcasts a bigger NID. If duplicate address-
ing occurs, duplicate nodes which have fewer TCP
connections or are in the smaller network should
rejoin the network. The benefits of choosing the
node from a smaller network are quicker responses
and lesser possible disconnections.

E1: Nj is in network G and receives NIDG′ , which
is different from its own NIDG, and then the
network merging is detected.

E2: When merging is detected, the detecting
node Nj broadcasts a merging request
(MREQ) to all networks.

E3: V and V′ (all nodes in both networks) receive
the MREQ and then enter the MERGE state.

E4: V and V′ broadcast their IDs and the number
of TCP connections in both networks; thus, V
and V′ receive full information of both net-
works and modify their RLs and choose the
holder who broadcasts the bigger NID to be
their holder.

E5: If duplicate addressing occurs, duplicate nodes
Nd and Nd′ check the number of TCP connec-
tions and node numbers in both network.

F1: If E(d) > E(d′) (the number of TCP con-
nections), Nd′ enters the INITIAL state
to request a unique address.

F2: If E(d) < E(d′), Nd enters the INITIAL
state to request a unique address.

F3: If E(d) = E(d′), but n ≥ n′, Nd′ enters
the INITIAL state to request a unique
address.

F4: If E(d) = E(d′), but n < n′, Nd′ enters
the INITIAL state to request a unique
address.

As shown in Fig. 13, there are two networks G
(NIDG) and G′ (NIDG′) intending to merge and
they have the same number of nodes. The hold-
ers are N0 and N7 in G and G′, respectively. Dur-
ing network merging, all nodes in both networks

broadcast their IDs and get the full network infor-
mation. We assume there is no duplicate node
occurring to simplify the explanation of network
merging. NIDG is bigger than NIDG′ , so that the
holder of merged network G is N0.

4 Centralized Ring-Based Address
Autoconfiguration Protocol(CRAA)

With regard to evenness, the centralized RAA pro-
tocol (named CRAA) is introduced to distribute
address resources evenly. The difference between
DRAA and CRAA protocols in the address reque-
sting phase of node joining is that the CRAA pro-
tocol selects the largest free address block to use
during the address requesting phase. Furthermore,
the CRAA protocol in the failed node checking
phase can recover more than one failed node
because the holder in CRAA maintains the node
list (NL) which contains all used IP addresses in
the network. The NL is helpful when there are two
or more continuous node failures in a ring, so that
the lost address resources can be retrieved with the
help of the holder. During networks merging, the
NL reduces broadcast messages by exchanging the
holder’s NL only.

In the address requesting phase, the new node
in the CRAA protocol waits for all neighboring
nodes’ AREP messages and selects the largest free
address block for use. The DRAA protocol can dis-
tribute valid addresses immediately, but the
address block of each node will probably not be
evenly for the long-term perspective. The advan-
tage of the CRAA protocol is averaging the num-
ber of free address blocks managed by each node.
Using the CRAA protocol to allot address blocks
postpones the address depletion timing in each sin-
gle node and further manages address resources
effectively. By contrast with the DRAA protocol,
Nj sends an AREQ message and awaits the expi-
ration of an AREQ_Timer in the CRAA protocol.
After the timeout, if Nj gets any AREP message, Nj
selects the responding node which distributes the
largest free address block. The address requesting
phase in the CRAA protocol is given below.

G1: Let Nj be in the initial state and intend to
join the network in the CRAA protocol. It
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Fig. 13 Network merging
in the DRAA protocol
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sends an AREQ message to N(j) and awaits
an AREP.

G2: Upon getting the largest address block of an
AREP message, Nj takes over the free ad-
dress block distributed from the responding
node Ni, using the last address from the ad-
dress block as its own IP address.

G3: After Nj takes over the address block, Nj
transmits an AREP_ACK to the responded
node. The AREP_ACK message is used for
ensuring that Nj receives the AREP message
and participates in the network.

G4: If Nj does not get any AREP message after an
AREQ_Timer expires, Nj retries the address
requesting phase r times. r is the maximum of
retry times.

G5: If Nj retries the address requesting phase r
times and still not receiving any AREP mes-
sage, Nj randomly selects an address to use
and possesses all address blocks.

As shown in Fig. 14, a new node intends to join
the network. The new node broadcasts an AREQ
message to its neighbors (N0, N15, and N31) and
then chooses the AREP from N0 which has the
largest address block to use. After taking over the
free address block, the new node becomes N47 and
sends an AREP_ACK message to N0.

Since the holder maintains the NL of the net-
work in the CRAA protocol, each node sends an
address registration request to the holder when a
node takes over a free address block. After a new
node uses a new IP address, the new node sends
a registration request (RREQ) to the holder that
records the new node’s address on the NL and
the holder sends a registration reply (RREP) to

the new node. The CRAA protocol adds two mes-
sages, RREQ and RREP, to maintain the NL. The
NL can help to recover the failed nodes. If there are
two or more continuous node failures in a ring, the
lost address blocks can be retrieved with the help
of the holder in the CRAA protocol. The failed
node checking phase of CRAA protocol is given
below.

H1: Nj sends an ACHK message to Pj (PIDj is in
its RLj).

H2: If Pj is alive, it sends an ALIVE message to
Nj.

I1: Nj sends an RREQ to the holder to up-
date the NL.

I2: The holder sends back an RREP to Nj.
The failed node checking phase is fin-
ished.

H3: If Pj is invalid, Nj retrieves the address block
of Pj. Then Nj sends an ARET message to
SPj.

J1: An ARET_ACK message is replied when
SPj is alive. The ARET_ACK message
includes the RL of SPj, so that Nj can
modify its PIDj and SPIDj in its RLj.

J2: Nj sends an RREQ to the holder to up-
date the NL.

J3: The holder sends back an RREP to Nj.
The failed node checking phase is fin-
ished.

H4: If SPj is invalid too, Nj sends an RREQ to the
holder to inform that all predecessors fail.
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Fig. 14 The message flows of the joining procedure without the node’s failure in the CRAA protocol

H5: The holder sends back a RREP to Nj which in-
cludes the new predecessors of Nj. The failed
node checking phase is finished.

As shown in Fig. 15a, the predecessor P47 of the
new node N47 fails. When a new node retrieves
the ARET_ACK message from SP47, it sends an
RREQ message to the holder N0 to remove the
invalid address PID47 (ID is 31) from the NL in
the CRAA protocol. As shown in Fig. 15b, all pre-
decessors of N47 fail. N47 sends an RREQ message
to N0 to remove the invalid addresses [PID47 (ID
is 31) and SPID47 (ID is 15)] from the NL. The
holder N0 sends back an RREP message to N47 for
updating all predecessors of N47 in its RL47.

By contrast with the DRAA protocol during
network merging, in the CRAA protocol, when
the holder receives the MREQ, it broadcasts its
own NL. Each node receives the holders’ NLs,
merges those NLs, modifies its own RL and chooses
the bigger NID to be its network identifier. As
shown in Fig. 16, there are two networks G and G′
intending to merge. Only the holders N0 and N7
broadcast their own NLs to G and G′. This method
reduces large communication overhead during net-
work merging. The NL becomes much significant
in CRAA, so that we will introduce the replication
of the NL.

The NL incorporates in all used nodes in the net-
work and is a helpful information source for both
the lost address block retrieval and network merg-
ing. If the NL is lost in holder crashing, it requires
the assistance from all nodes to rebuild the NL.

In order to lessen the information loss caused by
critical node crashing, replication—extracted from
P2P—is used to make several replicas of impor-
tant information to different nodes. Each node
records an RL in RAA protocols, and the holder
has no exception. The NL replicas exist in the
holder’s successor, predecessor and second pre-
decessor. When the holder gets an RREQ mes-
sage, the holder copies the latest NL to these three
nodes to ensure the freshness of the NL. If any
one of them does not get the NID from the holder
twice, it broadcasts a new NID. Each node knows
the holder changes when it receives the new NID.
There is no need to perform the holder selection
algorithm in this situation. Node partitioning is
indicated when a node fails to get an NID three
times in a row, whereas holder changing occurs if a
node with an NL fails to obtain an NID two times
successively. Therefore, the holder selection algo-
rithm is not performed in a partitioned network
where a node has the replication of the NL, which
reduces the probability of holder selection and
results in fewer control messages.

5 Performance Analysis

To make appropriate protocol simulation, all pro-
tocols are implemented with C++. We select
AAAC [14] and Prophet [19] to compare with
our protocols, and do not consider comparing with
MANETconf and DACP. This is because both of
AAAC, Prophet are conflicting free protocols,
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Fig. 15 The message
flows of failed node
checking phase in the
predecessor and second
predecessor’s failures in
the CRAA protocol.
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Fig. 16 Network merging
in the CRAA protocol
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while MANETconf and DACP are not. In AAAC,
the authors had shown its performance is better
than MANETconf. Both of MANETconf and
DACP have long latency when new nodes request
addresses.

The simulation parameter is shown in Table 2.
The simulation time is 1,500 s. The speed of nodes is
varied from 0 to 10 m/s, and the pause time is set to 0
for strict reasons. The mobile nodes move accord-
ing to the random waypoint mobility model [1].
The network size is set to 1, 000 × 1, 000 m2 where
the number of nodes is from 50 to 300. The size
of address blocks is set to 2m IP addresses and m
are 10 and 24. To account for our solution in a sim-
ple fashion, we apply private IPv4 addresses. RAA
protocols also adapt easily to the IPv6 address
space. The maximal size of the address block is
24-bit (class A) which contains 16,777,216 IP
addresses and makes a suitable selection for large
networks. In particular, in our simulation, the trans-
mission range is 250 m. The underlying routing
protocol applies the DSDV [9] in all simulations,
but our solutions can be used with any routing

protocol. The network is initialized with a single
node. Nodes join the network every 1 s and arriv-
ing nodes are placed randomly in the rectangu-
lar region. The beacon interval for the holder to
broadcast its NID is set to 10 s. The maximum
retry times r of AREQ is set to 3 [19], and the
AREQ_Timer is set to 2 s for quicker addressing.
The number of TCP connections is set to 20% of
nodes. For strict reasons, when all nodes are sta-
ble, node leaving and rejoining, network partition-
ing and network merging are produced freely. The
performance metrics of the simulation are given
below.

• Latency: Latency of address allocation repre-
sents the average latency for a new node to ob-
tain a unique IP address within the network. The
shorter the latency, the better, since it
means a new node can get a usable IP address
more rapidly.

• Communication overhead: Communication
overhead refers to the number of control mes-
sages transmitted during the simulation period,
including unicast and broadcast messages.
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Table 2 Simulation
parameters

Parameters Value

Network size 1, 000 × 1, 000 m2

Number of nodes 50–300
Address block size 210 and 224

Inter-arrival time interval 1 s
Maximum node speed 10 m/s
Transmission range 250 m

Normally, broadcast messages occupy more
bandwidth than unicast messages do. In our sim-
ulation, we investigate statistics of the number
of both unicast and broadcast messages.

• Evenness: Evenness implies that address blocks
should be evenly distributed in all nodes, which
indicates that each node has the capability to
assign address blocks to newly joined nodes.
The more evenly address blocks are allotted, the
fewer the address resource consumption times
in each node are, from which we are able to
determine whether address blocks are evenly
distributed. Also, latency is lengthened if any
resource consumption is produced.

• Uninterruptible connection: If duplicate address-
ing occurs during network merging, the
on-going TCP connections in duplicate nodes
will be broken. Duplicate nodes thus need to
re-transmit data, which inevitably causes the
unnecessary consumption of bandwidth.

5.1 Performance of latency

Figure 17 depicts the average latency of
address allocation (axis-Y) versus the varied num-
ber of nodes (axis-X), with two address block
sizes: 210 and 224, respectively illustrated in Fig.
17a, b. In general, the DRAA protocol has the
shortest latency because the DRAA protocol fast
replies an address request and maintains orphan
address blocks when a node joins the network.
This strategy not only reduces the resource con-
sumption times in a single node but also short-
ens the latency. The CRAA protocol has longer
latency than AAAC and DRAA protocols be-
cause it awaits AREPs of neighbors to select a
larger address block. Prophet has the longest la-
tency when the number of nodes is more than
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Fig. 17 Average latency of address allocation with the var-
ied number of nodes at m = 10 and 24

150 because during network merging, all nodes
in the smaller NID have to rejoin the network
and wait for the expiration of an AREQ_Timer.
If the number of nodes is 50, all protocols have
longer latency because the network size is 1, 000×
1, 000 m2 and the transmission range is 250 m.
When a new node joins the network, it has the
higher probability that no node is within its trans-
mission range, so that the new node needs to
await the AREQ_Timer expiration and retry three
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Fig. 18 The number of broadcast messages with the varied
number of nodes at m = 10 and 24

times. When the number of nodes is more than
150 at m = 10 in Fig. 17a, the latency of AAAC
and DRAA increases with the node number be-
cause more resource consumption times in the
whole network will expand the number of
address requesting phase retries.

5.2 Performance of communication overhead

Figure 18 shows the number of broadcast mes-
sages (axis-Y) versus the varied number of nodes
(axis X), with two address block sizes: 210 and 224,
respectively, illustrated in Fig. 18a, b. Most broad-
cast messages are arisen due to DAD during net-
work merging. Prophet has the fewest broadcast
messages because it does not preform DAD during
merging and all nodes with the smaller NID rejoin
the network. The CRAA protocol has the second
fewest broadcast messages because only the holder
broadcasts NL for DAD during network merging.
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Fig. 19 The number of unicast messages with the varied
number of nodes at m = 10 and 24

The DRAA protocol has fewer broadcast mes-
sage than AAAC because the resource consump-
tion times of DRAA are less than AAAC. With
resources consumed, AAAC needs to recover or-
phan blocks by means of many broadcast messages.
In addition, in node leaving, a leaving node in the
DRAA protocol notifies only its successor. How-
ever, in AAAC, it needs to notify all nodes of its
leaving by broadcast messages because the leav-
ing node does not know which one should take
over its address block. On the whole, when the
address block size is 224, DRAA and AAAC pro-
tocols have fewer broadcast messages because the
resource consumption times are reduced mean-
while.

Figure 19 displays the number of unicast mes-
sages (axis-Y) versus the varied number of nodes
(axis-X), with two address block sizes: 210 and 224,
respectively, illustrated in Fig. 19a, b. Although
the number of unicast messages has fewer impacts
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on communication overhead, we investigate it to
observe the characteristics of different protocols.
AAAC has the fewest unicast messages because
most of its control messages are handled with
broadcast messages. The DRAA protocol improves
control messages in AAAC. For instance, broad-
cast messages are replaced with unicast messages
during node leaving; therefore, its number of
broadcast messages is less than AAAC’s whereas
it has more broadcast messages than AAAC. In
the CRAA protocol, more unicast messages are
added to maintain the NL, so its unicast messages
are more than those in DRAA as well as AAAC.
Unicast messages in Prophet are the most because
many nodes need to rejoin the network during net-
work merging, which results in the large number
of unicast messages. Generally speaking, as the
address block size is larger (Fig. 19b), the num-
ber of unicast messages is less than that with the
smaller address block size. However, the difference
of these two numbers is not noticeable. The main
discrepancy is that when address blocks are large
enough, the resource consumption times in a single
and duplicate addressing are reduced, and so is the
number of unicast messages.

5.3 Performance of evenness

Figure 20 shows the resource consumption times
(axis-Y) versus the varied number of nodes (axis-
X), with two address block sizes: 210 and 224, respec-
tively illustrated in Fig. 20a, b. In AAAC, when a
new node requests an IP address from a resource-
consumptive node which has no address to allo-
cate, the resource-consumptive node broadcasts
SEARCH_ADDR messages, waiting for all other
nodes to respond their own sets of IP addresses.
This shows that if there are more resources running
out, the latency of address allocation and broad-
cast messages will increase. The DRAA protocol,
during node joining, has the failed node checking
phase to retrieve orphan blocks, so the resource
consumption times decrease. Normally, evenly dis-
tributed address resources will reduce the resource
consumption times. The CRAA protocol has evenly
distributed resources because nodes in the CRAA
protocol request address blocks from all neighbors
and choose the largest one to use. Even though

the CRAA protocol raises latency slightly, results
show the strategy is worthy. Although the way
Prophet allots addresses is different from that of
buddy system approaches (AAAC, DRAA, and
CRAA) and does not guarantee every allotted
address is unique (nevertheless, buddy system ap-
proaches do), f (n), which distributes addresses,
does not have the phenomenon of resource con-
sumption in Prophet solution. When the address
block size is large enough (Fig. 20b), the resource
consumption times will be significantly reduced
and it is the CRAA protocol whose resource
consumption times are close to be 0.

5.4 Performance of uninterruptible connection

Figure 21 depicts the number of breaking
on-going connections (axis-it Y) versus the varied
number of nodes (axis-X), with two address block
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Fig. 20 Resource consumption times with the varied num-
ber of nodes at m = 10 and 24
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Fig. 21 The number of breaking on-going connections with
the varied number of nodes at m = 10 and 24

sizes: 210 and 224, respectively, illustrated in Fig.
21a, b. The buddy system approaches (AAAC,
DRAA and CRAA) all perform outstandingly.
Since the first node randomly selects an IP address
and afterwards allots addresses by dividing an ad-
dress block into half, the probability of duplicate
addressing is rather low during network merging,
especially when the address block size is large
enough (Fig. 21b), and so is the probability of
breaking on-going connections. In Prophet solu-
tion, all nodes with the smaller NID must rejoin
the network, and all connections should be broken.
When it comes to the performance of uninterrupt-
ible connections, Prophet performs the worst.

6 Conclusions

This paper proposes two ring-based address auto-
configuration protocols in mobile ad hoc networks.

RAA protocols use a logical ring to proceed ad-
dress allocation and resource management. The
ring provides unique address assignment without
DAD. Compared with existing address assignment
protocols, the DRAA protocol successfully achi-
eves low latency, fewer communication overhead,
the evenness and outstanding uninterruptible con-
nection. The DRAA protocol also tolerates one
node’s invalidity and restores a failed node without
help of the holder. Based on the above advantages,
the DRAA protocol is suitable for the small and
normal scale mobile ad hoc network. The CRAA
protocol further achieves low communication over-
head and evenness of dynamic address assignment,
and restores failed nodes with help of the holder.
According to our simulation results, the CRAA
protocol shows high efficiency in address alloca-
tion as well as in resource management and suit-
ability for the large scale mobile ad hoc network.
In the centralized CRAA protocol, the resource
management is centrally controlled by holder and
its fault tolerance ability is higher enough and sim-
ilar to the existing protocols. In the decentralized
DRAA protocol, the address is requested by uni-
cast communicating to predecessor and the 2nd
predecessor. This strategy gets the lower commu-
nication time and causes the only single fault tol-
erance. We can also keep more data and modify
our DRAA protocol to increase the fault toler-
ance ability. This result is not our main concern,
because of the communication time and the extra
storage will be increased. These two conditions are
a tradeoff.
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